OSCAR: The Project

Michael Joswig

TU Berlin & MPI-MiS Leipzig

... and the OSCAR Development Team

ICERM, Feb 16, 2021
What is OSCAR?

http://oscar-system.org/

- joint software project of the CRC TRR 195, funded by DFG
 - written in Julia
 - planned duration: 2017–2028, three phases

beginning of 2nd phase: fully functional interoperability layer in Julia
open Source (MIT License)
JIT compilation: near C performance
supports Linux, BSD, MacOS, Windows
friendly C/Python-like (imperative) syntax
easy/efficient C interoperability; good C++ support
designed by mathematically minded people
Selected Julia Features

Julia is polymorphic:

\[
gcd(a::\text{Int}, b::\text{Int})
gcd(a::\text{BigInt}, b::\text{BigInt})
gcd(a::\text{Poly}\{T\}, b::\text{Poly}\{T\}) \text{ where } \{T <: \text{Field}\}
\]

Julia supports multimethods:

\[
*(a::\text{Int}, b::\text{Matrix}\{\text{Int}\})
*(a::\text{Matrix}\{\text{Int}\}, b::\text{Int})
\]

Julia supports triangular dispatch (template parameter chaining):

\[
*(x::T, y::S) \text{ where } \{T <: \text{QuotientRing}, S <: \text{Poly}\{T\}\}
\]
Example: Polytope From Group Orbit

\[G = \text{symmetric_group}(4) \]
\[x = [0,1,2,3] \]
\[M = \text{Array(matrix(ZZ, [permuted(x,g) for g in G]))) } \]
\[P = \text{convex_hull}(M) \]

A Polyhedron of dimension 3

\[\text{ambient_dim}(P) \]

4

\[F = \text{facets}(P; \text{as} = :\text{polyhedra}) \]
\[\text{n_vertices}(F) \]

[6, 6, 4, 6, 4, 4, 6, 4, 6, 6, 4, 6, 6, 4]
Example: Galois Groups

```
R, x = PolynomialRing(QQ, "x")
k, a = number_field(x^5 -2)
G, C = galois_group(k)
roots(C, 1)
```

5-element Array{qadic,1}:
583730*1048589^0 + O(1048589^1)
(333313*1048589^0 + O(1048589^1))*a + 655516*1048589^0 + O(1048589^1)
(715276*1048589^0 + O(1048589^1))*a + 576975*1048589^0 + O(1048589^1)
(641808*1048589^0 + O(1048589^1))*a + 419477*1048589^0 + O(1048589^1)
(406781*1048589^0 + O(1048589^1))*a + 910069*1048589^0 + O(1048589^1)

describe(G)

"C5 : C4"

Let α be polynomial ideal, homogeneous with respect to the grading given by (columns of) integer matrix Q. Consider the induced torus action on the affine variety $V(\alpha)$.

- Dolgachev and Hu (1998): **GIT-fan** classifies all possible quotients (of choices of open sets) in the sense of Mumford’s geometric invariant theory in terms of a polyhedral fan.

Example

For $\mathbb{C}^* \times \mathbb{C}^2 \to \mathbb{C}^2$, $t \cdot (x, y) = (tx, ty)$, $Q = (1, 1)$, $\alpha = 0$

- $U_1 = \mathbb{C}^2$
- $U_2 = \mathbb{C}^2 \setminus \{0\}$

yielding as quotients a point and \mathbb{P}^1, respectively.
In the following, $a = \text{Pluecker ideal}$ and $Q = \text{canonical grading matrix}$.

```plaintext
using GITFans
Q = [... ]; n = size(Q, 1)
QT, T = PolynomialRing(QQ, :T => 1:n)
D = free_abelian_group(size(Q, 2))
w = [D(Q[i, :]) for i = 1:n]
R = grade(QT, w)

a = ideal(R, [
]);
```
GIT-fan of affine cone over $\mathbb{G}(2, 5)$ II

```python
perms_list = [ [1,3,2,4,6,5,7,8,10,9],
               [5,7,1,6,9,2,8,4,10,3] ];
S10 = symmetric_group(n);
G, emb = sub([S10(x) for x in perms_list]...);
fanobj = GITFans.git_fan(a, Q, G);
fanobj.F_VECTOR

pm::Vector<pm::Integer>
20 110 240 225 76
```

GIT-fan of affine cone over $\mathbb{G}(2,5)$ III

Adjacency graph of GIT-cones of maximal dimension / of their orbits.
Contributing to OSCAR
http://oscar-system.org/

Comments and Feature Requests
- join us on Slack
 - send email to webmaster-oscar@mathematik.uni-kl.de for an invitation
- consider subscribing to the oscar-dev mailing list

Contributing Code
- write your own Julia package and contact us (see above)
- fork on GitHub and submit pull request
Now, you can start using the package as follows:

```
 julia> using JuLie
 julia> partitions(10)
```

You can get help for a function by putting a question mark in front, e.g.

```
 julia> ?partitions
```

Motivation

Especially for combinatorics there's a lot already in other computer algebra systems and this justifies the question: why another package? I will give 3 (interwoven) reasons:

1. I want to create a package that covers the mathematics that I especially care about in a way that I think about it. One distant goal is to have all the material available from the book *Introduction to Soergel bimodules* with Elias, Makisumi, and Williamson. It will take a lot of time and I don't know if I succeed but it's one motivation.

2. I hope this package will eventually form one pillar of the OSCAR project.

3. What really convinced me of Julia as programming language—and thus of the whole enterprise—is its straightforward high-level syntax (like Python) paired with incredible performance (unlike Python). Have a look at the following examples creating the list (not an iterator) of all partitions of the integer 90 (there are ~56.6 million) in different computer algebra systems.

In *Sage* (v9.1):

```
sage: time X=Partitions(90).list()
Wall time: 3min 5s  
#Uses 26.665GiB mem, quitting Sage takes quite a bit of time
```
Concluding Remarks

- **OSCAR v0.5.1** (Feb 12, 2021)
 - Julia v1.5.3

- **try this demo at home:**
 - Julia Package Manager: activate/instantiate

- **contact us:**
 - http://oscar-system.org
 - webmaster-oscar@mathematik.uni-kl.de